Minggu, 17 Mei 2015

GARIS BILANGAN

Garis bilangan

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Garis bilangan (bahasa Inggris: number line) dalam matematika dasar adalah suatu gambar garis lurus di mana setiap titiknya diasumsikan melambangkan suatu bilangan real dan setiap bilangan real merujuk pada satu titik tertentu.[1] Seringkali bilangan bulat ditunjukkan dengan lambang titik-titik tertentu yang berjarak sama di sepanjang garis ini.
Misalnya, gambar di bawah ini menunjukkan bilangan bulat dari −9 sampai 9. Meskipun demikian, garis ini mencakup semua bilangan real, berkelanjutan tak terhingga ke kedua arahnya, dan juga bilangan-bilang tak bertanda yang terdapat di antara bilangan-bilangan bulat itu. Biasanya digunakan sebagai alat bantu dalam mengajar penjumlahan dan pengurangan sederhana, khususnya yang melibatkan bilangan negatif.
Garis bilangan
Garis di atas dibagi menjadi dua belahan simetri oleh titik nol (origin), yaitu yang melambangkan bilangan nol.
Dalam matetmatika lanjutan, ekspresi "garis bilangan real" (real number line atau real line) biasanya dipakai untuk melambangkan konsep di atas, yaitu setiap titik pada garis lurus ini melambangkan satu bilangan real tertentu, dan vice versa ("sebaliknya").

Menggambar garis bilangan

Garis bilangan biasanya digambar sebagai suatu garis horisontal. Bilangan positif selalu terletak di kanan titik nol, dan bilangan negatif selalu di sebelah kiri titik nol. Sebuah ujung panah ditempatkan di kedua ujung untuk menandakan bahwa garis ini akan berlanjut dengan bilangan real (dilambangkan dengan \mathbb{R}) positif dan negatif sampai tak terhingga. Bilangan real terdiri dari bilangan irasional maupun bilangan rasional, yang meliputi pula bilangan bulat, bilangan cacah, dan bilangan asli.
Sebuah garis yang digambar melalui titik nol dengan arah tegak lurus dari garis bilangan real dapat pula digunakan untuk melambangkan bilangan imaginer. Garis tegak lurus ini, disebut garis imaginer, memperluas garis bilangan menjadi suatu bidang bilangan kompleks, yang titik-titiknya melambangkan bilangan-bilangan kompleks.

PENCERMINAN BANGUN DATAR

Pencerminan Bangun Datar

Pencerminan Bangun Datar. Pencerminan yaitu proses membuat bayangan suatu bangun atau benda tepat sama dengan aslinya. Suatu bangun datar dapat dicerminkan terhadap suatu garis. Pada pencerminan suatu bangun memiliki bentuk dan ukuran sama dengan aslinya. Jika suatu benda dicerminkan, akan diperoleh:
a. jarak benda = jarak bayangan,
b. bentuk benda = bentuk bayangan,
c. besar benda = besar bayangan.
Suatu bangun datar  dapat dicerminkan terhadap sumbu X dan sumbu Y. Bagun datar  juga dapat dicerminkan terhadap suatu garis tertentu.
Berikut ini beberapa contoh soal tentang pencerminan bangun datar.
  • Perhatikan gambar di bawah ! Hasil pencerminan bangun terhadap garis g adalah....
Hasil pencerminan bangun terhadap garis g adalah d.
  • Hasil pencerminan bangun ABCD terhadap cermin g adalah A'B'C'D'. Bangun hasil pencerminan yang tepat adalah....
Hasil pencerminan bangun yang tepat adalah d.

PERSAMAAN LINEAR

Persamaan linear


Persamaan linear adalah sebuah persamaan aljabar, yang tiap sukunya mengandung konstanta, atau perkalian konstanta dengan variabel tunggal. Persamaan ini dikatakan linear sebab hubungan matematis ini dapat digambarkan sebagai garis lurus dalam Sistem koordinat Kartesius.
Contoh grafik dari suatu persamaan linear dengan nilai m=0,5 dan b=2 (garis merah)
Bentuk umum untuk persamaan linear adalah
y = mx + b.\,
Dalam hal ini, konstanta m akan menggambarkan gradien garis, dan konstanta b merupakan titik potong garis dengan sumbu-y. Persamaan lain, seperti x3, y1/2, dan xy bukanlah persamaan linear.

Contoh

Contoh sistem persamaan linear dua variabel:
x + 2y = 10,\,,
3b + 5c = 4d+ 20,\,,
5x - 3y +6 = -9x + 8y+ 4,\,

Sistem Persamaan Linear Dua Variabel

Persamaan linear yang rumit, seperti di sebut di atas, bisa ditulis dengan menggunakan hukum aljabar agar menjadi bentuk yang lebih sederhana. Seperti contoh, huruf besar di persamaan merupakan konstanta, dan x dan y adalah variabelnya.

Bentuk Umum

Ax + By + C = 0,\,
dimana konstanta A dan B bila dijumlahkan, hasilnya bukan angka nol. Konstanta dituliskan sebagai A ≥ 0, seperti yang telah disepakati ahli matematika bahwa konstanta tidak boleh sama dengan nol. Grafik persamaan ini bila digambarkan, akan menghasilkan sebuah garis lurus dan setiap garis dituliskan dalam sebuah persamaan seperti yang tertera diatas. Bila A ≥ 0, dan x sebagai titik potong, maka titik koordinat-xadalah ketika garis bersilangan dengan sumbu-x (y = 0) yang digambarkan dengan rumus -c/a. Bila B≥ 0, dan y sebagai titik potong, maka titik koordinat- y adalah ketika garis bersilangan dengan sumbu-y (x = 0), yang digambarkan dengan rumus -c/b.

Bentuk standar

ax + by = c,\,
di mana, a dan b jika dijumlahkan, tidak menghasilkan angka nol dan a bukanlah angka negatif. Bentuk standar ini dapat diubah ke bentuk umum, tapi tidak bisa diubah ke semua bentuk, apabila a dan b adalah nol.

Bentuk titik potong gradien

Sumbu-y

y = mx + b,\,
dimana m merupakan gradien dari garis persamaan, dan titik koordinat y adalah persilangan dari sumbu-y. Ini dapat digambarkan dengan x = 0, yang memberikan nilai y = b. Persamaan ini digunakan untuk mencari sumbu-y, dimana telah diketahui nilai dari x. Y dalam rumus tersebut merupakan koordinat y yang anda taruh di grafik. Sedangkan X merupakan koordinat x yang anda taruh di grafik.

Sumbu-x

x = \frac{y}{m} + c,\,
dimana m merupakan gradien dari garis persamaan, dan c adalah titik potong-x, dan titik koordinat x adalah persilangan dari sumbu-x. Ini dapat digambarkan dengan y = 0, yang memberikan nilai x = c. Bentuk y/m dalam persamaan sendiri berarti bahwa membalikkan gradien dan mengalikannya dengan y. Persamaan ini tidak mencari titik koordinat x, dimana nilai y sudah diberikan.
ء-

Sistem persamaan linear lebih dari dua variabel

Sebuah persamaan linear bisa mempunyai lebih dari dua variabel, seperti berikut ini:
a_1 x_1 + a_2 x_2 + \cdots + a_n x_n = b.
di mana dalam bentuk ini, digambarkan bahwa a1 adalah koefisien untuk variabel pertama, x1, dan n merupakan jumlah variabel total, serta b adalah konstanta.


HIMPUNAN

Himpunan (matematika)

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Dalam matematika, himpunan adalah segala koleksi benda-benda tertentu yang dianggap sebagai satu kesatuan. Walaupun hal ini merupakan ide yang sederhana, tidak salah jika himpunan merupakan salah satu konsep penting dan mendasar dalam matematika modern, dan karenanya, studi mengenai struktur kemungkinan himpunan dan teori himpunan, sangatlah berguna.
Irisan dari dua himpunan yang dinyatakan dengan diagram Venn
Teori himpunan, yang baru diciptakan pada akhir abad ke-19, sekarang merupakan bagian yang tersebar dalam pendidikan matematika yang mulai diperkenalkan bahkan sejak tingkat sekolah dasar. Teori ini merupakan bahasa untuk menjelaskan matematika modern. Teori himpunan dapat dianggap sebagai dasar yang membangun hampir semua aspek dari matematika dan merupakan sumber dari mana semua matematika diturunkan.

Notasi Himpunan

Hubungan di antara 8 buah set dengan menggunakan diagram Venn
Biasanya, nama himpunan ditulis menggunakan huruf besar, misalnya S, A, atau B, sementara anggota himpunan ditulis menggunakan huruf kecil (a, c, z). Cara penulisan ini adalah yang umum dipakai, tetapi tidak membatasi bahwa setiap himpunan harus ditulis dengan cara seperti itu. Tabel di bawah ini menunjukkan format penulisan himpunan yang umum dipakai.
Nama Notasi Contoh
Himpunan Huruf besar S
Anggota himpunan Huruf kecil (jika merupakan huruf) a
Kelas Huruf tulisan tangan \mathcal{C}
Himpunan-himpunan bilangan yang cukup dikenal, seperti bilangan kompleks, riil, bulat, dan sebagainya, menggunakan notasi yang khusus.
Bilangan Asli Bulat Rasional Riil Kompleks
Notasi
\mathbb{N} \mathbb{Z} \mathbb{Q} \mathbb{R} \mathbb{C}
Simbol-simbol khusus yang dipakai dalam teori himpunan adalah:
Simbol
Arti
\{ \} atau \varnothing Himpunan kosong
\cup Operasi gabungan dua himpunan
\cap Operasi irisan dua himpunan
\subseteq, \subset, \supseteq, \supset Subhimpunan, Subhimpunan sejati, Superhimpunan, Superhimpunan sejati
A^C Komplemen
\mathcal{P}(A) Himpunan kuasa
Himpunan dapat didefinisikan dengan dua cara, yaitu:
  • Enumerasi, yaitu mendaftarkan semua anggota himpunan. Jika terlampau banyak tetapi mengikuti pola tertentu, dapat digunakan elipsis (...).
B = \{ apel,\,jeruk,\,mangga,\,pisang\}
A = \{ a,\,b,\,c,\,...,\,y,\,z\}
\mathbb{N} = \{1,\,2,\,3,\,4,\,...\}
  • Pembangun himpunan, tidak dengan mendaftar, tetapi dengan mendeskripsikan sifat-sifat yang harus dipenuhi oleh setiap anggota himpunan tersebut.
O = \{ u\, |\, u \mbox{ adalah bilangan ganjil} \}
E = \{ x\, |\, x \in \mathbb{Z} \and (x \mbox{ mod } 2 = 0)\}
P = \{ p\, |\, p \mbox{ adalah orang yang pernah menjabat sebagai Presiden RI} \}
Notasi pembangun himpunan dapat menimbulkan berbagai paradoks, contohnya adalah himpunan berikut:
A = \{ x\, |\, x \notin A\}
Himpunan A tidak mungkin ada, karena jika A ada, berarti harus mengandung anggota yang bukan merupakan anggotanya. Namun jika bukan anggotanya, lalu bagaimana mungkin A bisa mengandung anggota tersebut.

Himpunan kosong

Himpunan {apel, jeruk, mangga, pisang} memiliki anggota-anggota apel, jeruk, mangga, dan pisang. Himpunan lain, semisal {5, 6} memiliki dua anggota, yaitu bilangan 5 dan 6. Kita boleh mendefinisikan sebuah himpunan yang tidak memiliki anggota apa pun. Himpunan ini disebut sebagai himpunan kosong.
Himpunan kosong tidak memiliki anggota apa pun, ditulis sebagai:
\varnothing = \{ \, \}

Relasi antar himpunan

Himpunan bagian

Dari suatu himpunan, misalnya A = {apel, jeruk, mangga, pisang}, dapat dibuat himpunan-himpunan lain yang anggotanya adalah diambil dari himpunan tersebut.
  • {apel, jeruk}
  • {jeruk, pisang}
  • {apel, mangga, pisang}
Ketiga himpunan di atas memiliki sifat umum, yaitu setiap anggota himpunan itu adalah juga anggota himpunan A. Himpunan-himpunan ini disebut sebagai himpunan bagian dari A. Jadi dapat dirumuskan:
B adalah himpunan bagian dari A jika setiap anggota B juga terdapat dalam A.
 B \subseteq A \equiv \forall_x \, x \in B \rightarrow x \in A
Kalimat di atas tetap benar untuk B himpunan kosong. Maka \varnothing juga subhimpunan dari A.
Untuk sembarang himpunan A,
\varnothing \subseteq A
Definisi di atas juga mencakup kemungkinan bahwa himpunan bagian dari A adalah A sendiri.
Untuk sembarang himpunan A,
A \subseteq A
Istilah subhimpunan dari A biasanya berarti mencakup A sebagai himpunan bagiannya sendiri. Kadang-kadang istilah ini juga dipakai untuk menyebut himpunan bagian dari A, tetapi bukan A sendiri. Pengertian mana yang digunakan biasanya jelas dari konteksnya.
Himpunan bagian sejati dari A menunjuk pada himpunan bagian dari A, tetapi tidak mencakup A sendiri.
B \subset A \equiv B \subseteq A \wedge B \neq A

Superhimpunan

Kebalikan dari subhimpunan adalah superhimpunan, yaitu himpunan yang lebih besar yang mencakup himpunan tersebut.
A \supseteq B \equiv B \subseteq A

Kesamaan dua himpunan

Himpunan A dan B disebut sama, jika setiap anggota A adalah anggota B, dan sebaliknya, setiap anggota B adalah anggota A.
A = B \equiv \forall_x\; x \in A \leftrightarrow x \in B
atau
A = B \equiv A \subseteq B \wedge B \subseteq A
Definisi di atas sangat berguna untuk membuktikan bahwa dua himpunan A dan B adalah sama. Pertama, buktikan dahulu A adalah subhimpunan B, kemudian buktikan bahwa B adalah subhimpunan A.

Himpunan Kuasa

Himpunan kuasa atau himpunan pangkat (power set) dari A adalah himpunan yang terdiri dari seluruh himpunan bagian dari A. Notasinya adalah \mathcal{P}(A).
Jika A = {apel, jeruk, mangga, pisang}, maka \mathcal{P}(A):
 { { },
   {apel}, {jeruk}, {mangga}, {pisang},
   {apel, jeruk}, {apel, mangga}, {apel, pisang},
   {jeruk, mangga}, {jeruk, pisang}, {mangga, pisang},
   {apel, jeruk, mangga}, {apel, jeruk, pisang}, {apel, mangga, pisang}, {jeruk, mangga, pisang},
   {apel, jeruk, mangga, pisang} }
Banyaknya anggota yang terkandung dalam himpunan kuasa dari A adalah 2 pangkat banyaknya anggota A.
|\mathcal{P}(A)| = 2^{|A|}

Kelas

Suatu himpunan disebut sebagai kelas, atau keluarga himpunan jika himpunan tersebut terdiri dari himpunan-himpunan. Himpunan A = \{ \{a,\,b\},\, \{c,\,d,\,e,\,f\},\,\{a,\,c\},\,\{,\}\} adalah sebuah keluarga himpunan. Perhatikan bahwa untuk sembarang himpunan A, maka himpunan kuasanya, \mathcal{P}(A) adalah sebuah keluarga himpunan.
Contoh berikut, P = \{ \{a,\,b\}, c\} bukanlah sebuah kelas, karena mengandung anggota c yang bukan himpunan.

Kardinalitas

Kardinalitas dari sebuah himpunan dapat dimengerti sebagai ukuran banyaknya anggota yang dikandung oleh himpunan tersebut. Banyaknya anggota himpunan \{apel, jeruk, mangga, pisang\} adalah 4. Himpunan \{p, q, r, s\} juga memiliki anggota sejumlah 4. Berarti kedua himpunan tersebut ekivalen satu sama lain, atau dikatakan memiliki kardinalitas yang sama.
Dua buah himpunan A dan B memiliki kardinalitas yang sama, jika terdapat fungsi korespondensi satu-satu yang memetakan A pada B. Karena dengan mudah kita membuat fungsi \{(apel,\,p),\,(jeruk,\,q),\,(mangga,\,r),\,(pisang,\,s)\} yang memetakan satu-satu dan kepada himpunan A ke B, maka kedua himpunan tersebut memiliki kardinalitas yang sama.

Himpunan Denumerabel

Jika sebuah himpunan ekivalen dengan himpunan \mathbb{N}, yaitu himpunan bilangan asli, maka himpunan tersebut disebut denumerabel. Kardinalitas dari himpunan tersebut disebut sebagai kardinalitas \mathfrak{a}.
Himpunan semua bilangan genap positif merupakan himpunan denumerabel, karena memiliki korespondensi satu-satu antara himpunan tersebut dengan himpunan bilangan asli, yang dinyatakan oleh 2n\,.
A = \{ 2,\, 4,\, 6,\, 8,\, ...\}

Himpunan Berhingga

Jika sebuah himpunan memiliki kardinalitas yang kurang dari kardinalitas \mathfrak{a}, maka himpunan tersebut adalah himpunan berhingga.

Himpunan Tercacah

Himpunan disebut tercacah jika himpunan tersebut adalah berhingga atau denumerabel.

Himpunan Non-Denumerabel

Himpunan yang tidak tercacah disebut himpunan non-denumerabel. Contoh dari himpunan ini adalah himpunan semua bilangan riil. Kardinalitas dari himpunan jenis ini disebut sebagai kardinalitas \mathfrak{c}. Pembuktian bahwa bilangan riil tidak denumerabel dapat menggunakan pembuktian diagonal.
Himpunan bilangan riil dalam interval (0,1) juga memiliki kardinalitas \mathfrak{c}, karena terdapat korespondensi satu-satu dari himpunan tersebut dengan himpunan seluruh bilangan riil, yang salah satunya adalah y=tan(\pi x - \frac{1}{2}\pi).

Fungsi Karakteristik

Fungsi karakteristik menunjukkan apakah sebuah anggota terdapat dalam sebuah himpunan atau tidak.
\chi_{A}(x) = \begin{cases} 1,\quad\mbox{jika } x \in A \\ 0,\quad\mbox{jika } x \notin A \end{cases}
Jika A = \{apel,\,jeruk,\,mangga,\,pisang\} maka:
\chi_A(apel) = 1
\chi_A(durian) = 0
\chi_A(utara) = 0
\chi_A(pisang) = 1
\chi_A(singa) = 0
Terdapat korespondensi satu-satu antara himpunan kuasa \mathcal{P}(S) dengan himpunan dari semua fungsi karakteristik dari S. Hal ini mengakibatkan kita dapat menuliskan himpunan sebagai barisan bilangan 0 dan 1, yang menyatakan ada tidaknya sebuah anggota dalam himpunan tersebut.

Representasi Biner

Jika konteks pembicaraan adalah pada sebuah himpunan semesta S, maka setiap himpunan bagian dari S bisa dituliskan dalam barisan angka 0 dan 1, atau disebut juga bentuk biner. Bilangan biner menggunakan angka 1 dan 0 pada setiap digitnya. Setiap posisi bit dikaitkan dengan masing-masing anggota S, sehingga nilai 1 menunjukkan bahwa anggota tersebut ada, dan nilai 0 menunjukkan bahwa anggota tersebut tidak ada. Dengan kata lain, masing-masing bit merupakan fungsi karakteristik dari himpunan tersebut. Sebagai contoh, jika himpunan S = {a, b, c, d, e, f, g}, A = {a, c, e, f}, dan B = {b, c, d, f}, maka:
 Himpunan                            Representasi Biner
 ----------------------------        -------------------
                                     a b c d e f g
 S = { a, b, c, d, e, f, g }   -->   1 1 1 1 1 1 1
 A = { a,    c,    e, f    }   -->   1 0 1 0 1 1 0
 B = {    b, c, d,    f    }   -->   0 1 1 1 0 1 0
Cara menyatakan himpunan seperti ini sangat menguntungkan untuk melakukan operasi-operasi himpunan, seperti union (gabungan), interseksi (irisan), dan komplemen (pelengkap), karena kita tinggal menggunakan operasi bit untuk melakukannya. Representasi himpunan dalam bentuk biner dipakai oleh kompiler-kompiler Pascal dan juga Delphi.

Operasi dasar

Gabungan

Gabungan antara himpunan A dan B.
Dua himpunan atau lebih yang digabungkan bersama-sama. Operasi gabungan {{nowrap|1=AB setara dengan A or B, dan anggota himpunannya adalah semua anggota yang termasuk himpunan A ataupun B.
Contoh:
  • {1, 2} ∪ {1, 2} = {1, 2}.
  • {1, 2} ∪ {2, 3} = {1, 2, 3}.
  • {Budi} ∪ {Dani} = {Budi, Dani}.
Beberapa sifat dasar gabungan:
  • AB = BA.
  • A ∪ (BC) = (AB) ∪ C.
  • A ⊆ (AB).
  • AA = A.
  • A ∪ ∅ = A.
  • AB jika and hanya jika AB = B.

Irisan

Irisan antara himpunan A dan B.
Operasi irisan AB setara dengan A dan B. Irisan merupakan himpunan baru yang anggotanya terdiri dari anggota yang dimiliki bersama antara dua atau lebih himpunan yang terhubung. Jika AB = ∅, maka A dan B dapat dikatakan disjoint (terpisah).
Contoh:
  • {1, 2} ∩ {1, 2} = {1, 2}.
  • {1, 2} ∩ {2, 3} = {2}.
  • {Budi,Cici} ∩ {Dani,Cici} = {Cici}.
  • {Budi} ∩ {Dani} = ∅.
Beberapa sifat dasar irisan:
  • AB = BA.
  • A ∩ (BC) = (AB) ∩ C.
  • ABA.
  • AA = A.
  • A ∩ ∅ = ∅.
  • AB jika and hanya jika AB = A.

Komplemen

Komplemen B terhadap A.
Komplemen A terhadap U.
Diferensi simetris himpunan A dan B.
Operasi pelengkap A^C setara dengan not A atau A'. Operasi komplemen merupakan operasi yang anggotanya terdiri dari anggota di luar himpunan tersebut.
Contoh:
  • {1, 2} \ {1, 2} = ∅.
  • {1, 2, 3, 4} \ {1, 3} = {2, 4}.
Beberapa sifat dasar komplemen:
  • A \ BB \ A untuk AB.
  • AA′ = U.
  • AA′ = ∅.
  • (A′)′ = A.
  • A \ A = ∅.
  • U′ = ∅ dan ∅′ = U.
  • A \ B = AB.
Ekstensi dari komplemen adalah diferensi simetris (pengurangan himpunan), jika diterapkan untuk himpunan A dan B atau A - B menghasilkan
A\,\Delta\,B = (A \setminus B) \cup (B \setminus A).
Contohnya, diferensi simetris antara:
  • {7,8,9,10} dan {9,10,11,12} adalah {7,8,11,12}.
  • {Ana,Budi,Dedi,Felix} dan {Cici,Budi,Dedi,Ela} adalah {Ana,Cici,Ela,Felix}.

Hasil Kali Kartesian

Produk kertesian (perkalian himpunan) A X B (A dan B) dan anggota himpunan A={x,y,z} dan B={1,2,3}.
Hasil Kali Kartesian atau perkalian himpunan merupakan operasi yang menggabungkan anggota suatu himpunan dengan himpunan lainnya. Perkalian himpunan antara A dan B didefinisikan dengan A × B. Anggota himpunan | A × B | adalah pasangan terurut (a,b) dimana a adalah anggota himpunan A dan b adalah anggota himpunan B.
Contoh:
  • {1, 2} × {x, y} = {(1, x), (1, y), (2, x), (2, y)}.
  • {1, 2} × {a, b, c} = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c) }.
  • {1, 2} × {1, 2} = {(1, 1), (1, 2), (2, 1), (2, 2)}.
Beberapa sifat dasar himpunan perkalian:
  • A × ∅ = ∅.
  • A × (BC) = (A × B) ∪ (A × C).
  • (AB) × C = (A × C) ∪ (B × C).
  • | A × B | = | B × A | = | A | × | B |.